BLM-Rank: A Bayesian Linear Method for Learning to Rank and Its GPU Implementation
نویسندگان
چکیده
منابع مشابه
Effective Learning to Rank Persian Web Content
Persian language is one of the most widely used languages in the Web environment. Hence, the Persian Web includes invaluable information that is required to be retrieved effectively. Similar to other languages, ranking algorithms for the Persian Web content, deal with different challenges, such as applicability issues in real-world situations as well as the lack of user modeling. CF-Rank, as a ...
متن کاملLearning to Rank : Using Bayesian Networks
Ranking is one of the key components of an Information Retrieval system. Recently supervised learning is involved for learning the ranking function and is called ’Learning to Rank’ collectively. In this study we present one approach to solve this problem. We intend to test this problem in different stochastic environment and hence we choose to use Bayesian Networks for machine learning. This wo...
متن کاملA Two-stage active learning method for learning to rank
Learning to rank (L2R) algorithms use a labeled training set to generate a ranking model that can later be used to rank new query results. These training sets are costly and laborious to produce, requiring human annotators to assess the relevance or order of the documents in relation to a query. Active learning algorithms are able to reduce the labeling effort by selectively sampling an unlabel...
متن کاملBayesian Learning for Low-Rank matrix reconstruction
We develop latent variable models for Bayesian learning based low-rank matrix completion and reconstruction from linear measurements. For under-determined systems, the developed methods are shown to reconstruct low-rank matrices when neither the rank nor the noise power is known a-priori. We derive relations between the latent variable models and several low-rank promoting penalty functions. Th...
متن کاملListBM: A Learning-to-Rank Method for XML Keyword Search
This paper describes Peking University’s approach to the Ad Hoc Track. In our first participation, results for all four tasks were submitted: the Best In Context, the Focused, the Relevance In Context and the Thorough. Based on retrieval method Okapi BM25, we implement two different ranking methods NormalBM25 and LearningBM25 according to different parameter settings. Specially, the parameters ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2016
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.2015dap0001